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1. Introduction

Bayesian methods have been advocated in principle for many years
(Lindley 1965; DeGroot 1970), but their application has beenhampered in
practice by the computational intractability of many of theconcomitant (high-
dimensional) integrals. This state of affairs has been revolutionised in recent
years by the development of Markov Chain Monte Carlo (MCMC) methods
(see, e.g., the review by Brooks 1998) and their reversible-jump (RJ) exten-
sions (Green 1995). These methods allow samples to be drawn from posterior
distributions that are known only up to a constant of proportionality, thereby
sidestepping the evaluation of the difficult integrals and replacing other integrals
by straightforward averages (or related simple summary statistics) of sampled
values. The sampling process must usually be run for a very long time to allow
the generated Markov Chains to stabilise at the required stationary distributions,
but current computing power makes light of this demand. Consequently, there
has been an explosion in the use of RJMCMC methods for statistical modelling
in the past ten years.

One specific area of interest in such methods is that of discriminant analy-
sis, or supervised classification. In essence here the problem is to define a
suitable function ofp featuresx′ = (x1, x2, . . . , xp) that will best distinguish
betweeng a-priori groups or populations, and that can be used to classify future
unidentified individuals most accurately to their correct population. A set of in-
dividuals with known population membership is generally available for deriving
the function (usually termed the classifier) and assessing its performance. If this
set is large enough then it can be split into two independent parts to deal with
these two aspects, the first part for training the classifier andthe second part for
testing its efficacy, but if the set is not large then some form of data resampling
(such as jackknifing or bootstrapping) must be employed for the performance
assessment. This whole area has now been studied for many years and there
are many possible ways of deriving classifiers and determining their efficacies
(McLachlan 1992; Hand 1997). A full Bayesian approach has only recently
become viable, for the reasons outlined above, but the appropriate technology
has been rapidly developed (Denison, Holmes, Mallick, and Smith 2002).

However, although the derivation of classifiers and the estimation of their
classification performance has been worked out for a range of possible models
and classifier types, other important aspects have received less attention. One
such aspect, namely the confidence that can be ascribed to a particular classifi-
cation result, is important in general but especially so in safety-critical systems
such as medical diagnosis or air-traffic collision alert systems. We therefore
focus in this paper on methods for deriving confidence measures about classi-
fications in a Bayesian context. In Section 2 we summarise the main features
of Bayesian classification, in Section 3 we derive several possible confidence
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measures and compare them on a range of data sets for one particular classifier
family, in Section 4 we discuss how these measures can be used to choose be-
tween competing classifiers, and some concluding remarks aremade in Section
5.

2. Bayesian Classification

We first assume that the classifierC(x, θ) comes from a family of clas-
sifiers depending on the predictorsx as well as on a set of parametersθ′ =
(θ0, θ1, . . . , θq). For example, a linear classifier belongs to the familyC(x, θ) =
θ0 + θ1x1 + θ2x2 + . . . + θpxp of all linear combinations of the predictors,
with coefficients and constant term comprising the set of parameters. Applying
the classifier to an individualx yields the values of one or more classification
scores on which the classification ofx is made; frequently these scores are the
posterior probabilities of group memberships forx. However, in generalθ is
unknown and must be inferred from a set of individuals whose group mem-
berships as well as predictor values are known. The classicalsingle-classifier
approach splits this set of individuals into atraining setD, say, and atest set
T , say. Thenθ is replaced by an estimate derived fromD, and the resulting
classifier’s efficacy is assessed by finding the proportion of each group that is
misclassified inT . Different methods of estimation make different demands on
the data; a common framework involves the assumption of a probability model
for the dataD, and hence the use of maximum likelihood as the method of
estimation.

Within such a framework, parametric probability models arefrequently
used for the populations from which the groups are taken. In this case the
classifier parametersθ are functions of the population model parameters. For
example, the earliest linear classifier between two populations was derived em-
pirically by Fisher (1936) and was subsequently formalised by Welch (1939),
who modelled the two populations as two multivariate normaldistributions hav-
ing meansµ1, µ2 and a common dispersion matrixΣ. The coefficientsθi in
the linear classifier are then easily shown to be functions ofµ1, µ2 andΣ.
In practice these unknown parameters are replaced by their estimates from the
training dataD to yield what is commonly termed Fisher’s linear discriminant
function (LDF). If this function is denoted byF (x), say, then classification ofx
depends on whetherF (x) ≤ t or not, for some thresholdt. This is an example
of a classification score that is not an estimate of posterior probability of group
membership ofx. In other classifiers, e.g. logistic discriminators (McLachlan
1992), the classification score does yield such a probabilityestimate.

For a Bayesian approach we need additionally to specify a joint prior dis-
tribution π(θ) for the classifier parameters, form the likelihoodL(D|θ) of the
training data using the chosen probability model, and henceobtain the posterior
distribution of the parameters,
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π(θ|D) =
π(θ)L(D|θ)

∫

π(θ)L(D|θ)dθ
.

The Bayesian classifier is then the expected value ofC(x, θ) over this pos-
terior distribution, i.e.C(x|D) =

∫

C(x, θ)π(θ|D)dθ. This is known as the
predictiveclassification score. If the classification scores are the posterior prob-
abilities of group membership then these predictive valuesare often denoted by
p(y|x, D), wherey is the group label variable.

If the classifier parameters are functions of the probabilitymodel para-
meters, then the prior and posterior distributions are for the latter parameters
and the Bayesian classifier is the expected value ofC(x, θ) over this latter pos-
terior distribution. For example, in the case of Fisher’s LDF and multivariate
normal assumptions as above, Geisser (1982) shows that on taking the usual
reference prior expressing ignorance about the parametersµ1, µ2 andΣ, viz.

π(µ1, µ2,Σ) ∝ |Σ|−(p+1)/2,

then the posterior distribution of the parameters is a multivariate t distribu-
tion, and the expectation ofC(x, θ) over this distribution isF (x) + p(n1 −
n2)/2n1n2, wheren1, n2 are the group sample sizes in the training dataD.

This example involving Fisher’s LDF and multivariate normal assump-
tions is relatively unusual, in that analytical derivationof the expectation of
C(x, θ) is possible. More usually, evaluating the above two integrals can be
very difficult, particularly when the dimensionality ofθ is large. However,
from its definition the Bayesian classifier will obviously be well approximated
by the mean ofC(x, θ) over a large sample of independent observations from
π(θ|D). MCMC will enable such a sample to be drawn without having to eval-
uate the integral in the denominator ofπ(θ|D). We just need to ensure that
the MCMC acceptance probabilities are chosen so thatπ(θ|D) is the limiting
(stationary) distribution, run the chain for a preliminary(burn-in) period to en-
sure stationarity has been reached, and then sample (say) every 7th value. This
will produce approximate independence of observations, and consistency when
estimating higher-order moments. Each value then yields a single observation
from π(θ|D), so substituting them in turn intoC(x, θ) for the particularx to
be classified and averaging the results produces the Bayesianclassifier.

This is just an example of Bayesian averaging, which is used much more
generally in modelling (Hoeting, Madigan, Raftery, and Volinsky 1999). Of
course, the Bayesian approach does not preclude the choice of a single “best”
classifier, as one can simply be selected from the set of classifiers generated by
the sampling process; the classifier obtained from the “maximum a-posteriori”
(MAP) value ofθ would be an obvious choice. However, an averaged classi-
fier not only usually produces better overall performance than the single MAP
classifier, it is also the optimal decision-theoretic choicewhen there is no single



Confidence in Classification: A Bayesian Approach 203

“true” classifier that is being sought from among the familyC(x, θ) (Denison
et al. 2002, pp 28-29). So it is the most appropriate one to use in many practical
cases. The Bayesian approach has now been implemented for many different
families of classifiers, and details may be found, for example, in Denison et al.
(2002); we use the nearest neighbour family in the illustrations below.

3. Measures of Confidence

3.1 Introduction

An important consideration in many applications, particularly with criti-
cal systems such as when air traffic controllers attempt to screen potential air-
craft collisions, is the need to attach a measure of confidencerelating to any
particular classification. Although much effort has been expended in the past
on refining classifiers and developing methods of accurate assessment of their
overall performance, the estimation of uncertainty in classification prediction
has been relatively under-appreciated.

A traditional method of reducing the risk of misclassification is by means
of thereject option(surveyed in Fukunaga 1990), whereby we do not automat-
ically accept the outcome of the classifier for all points in the sample space, but
hold back any points about whose classification we have doubtswith the aim
of handling these points subsequently by different procedures. If the resultant
cost is less than the cost of wrong classification then such a procedure will im-
prove classification reliability. We can label pointsx held back in this way as
having UNSURE classification, and all other points as having SURE classifica-
tion. Among the latter will be ones that are classified correctly and others that
are classified incorrectly by the chosen classifier, so adopting such an approach
will lead to three categories of points in a test set: those whose classification is
SURE and CORRECT, those whose classification is SURE but INCORRECT,
and those whose classification is UNSURE.

We will therefore consider methods that allow us to construct these cat-
egories for any chosen classifier. Clearly, there is a scale of“sureness” along
along which points are categorised as SURE or UNSURE, and for convenience
we will align this scale with a probability scale of 0 to 1 (so that, for exam-
ple, there will be more UNSURE points at a value of sureness of 0.9 than at
one of 0.6). The Bayesian MCMC mechanism gives a good framework for de-
veloping the methodology, because consistency or otherwise of classification
outcomes among the different classifiers produced by the MCMCsample is an
obvious way of judging the uncertainty of the classification.In the next section
we consider a number of possible methods.
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3.2 Methodology

If we adopt the reject option approach, we need to establish how points
should be held back. Various possibilities have been mooted(see, e.g., Bishop
1995), but Chow (1970) showed that theoretically the optimal rejection rule is
to hold backx if its maximum posterior probability of allocation to any group
is less than a thresholdt. Different values oft will lead to different propor-
tions of UNSURE points and will therefore correspond to different levels of the
“sureness” scale.

In practice, of course, the posterior probabilities of allocation have to
be estimated. If we use the Bayesian approach they are given by the val-
ues of p(y|x, D) for each possible setting ofy, so x will be held back if
maxy{p(y|x, D)} < t. Providing that the classifier is one that delivers poste-
rior probabilitiesp(y|x, θ, D) as classifier scores,p(y|x, D) is just the expecta-
tion of these probabilities over the posterior distribution π(θ|D) and so is sim-
ply estimated by1

m

∑m
i=1 p(y|x, θi, D) over them MCMC samples. Choosing

a value oft and applying the classifier to all the pointsx in the test set will
identify the points to be classified and the points to be held back, thereby gen-
erating estimated probabilities of SURE CORRECT, SURE INCORRECT and
UNSURE classifications for the given populations at the chosenvalue oft. We
will call this procedure the standard reject method.

However, not all classifiers deliver a posterior probabilitybut instead give
a classification scoreC(x, θi) for each classifier making up the MCMC sam-
ple, so what should be done here? The obvious possibility is toclassify each
point in the test data by each of these individual classifiers,and any pointx that
is classified to the same group by more than a proportiont of classifiers could
be deemed a SURE classification at “sureness” levelt, otherwise the classifica-
tion is UNSURE. Here we convert each classifier result into a discrete variable
(group to whichx is classified) and then obtain the average incidence in each
category, so the result can still be formally viewed as a posterior probability
of allocation and hence falls within the scope of Chow’s result. In effect, if
C(x, θi) = y indicates that theith classifier allocatesx to classy, then we are
estimatingp(y|x, D) by 1

m

∑m
i=1 I(C(x, θi) = y) whereI(A) is the indicator

function taking value 1 ifA is true and 0 ifA is false. In the feature space,
this method produces a gradually widening envelope of classifications labelled
UNSURE ast increases, so we will call it the envelope method.

Note that the envelope method uses consistency of actual classifications,
so only labels points as UNSURE if they are unreliable in theirclassification
rather than simply if their posterior probabilities of group membership are not
high. It might therefore be a useful competitor to the standard reject method
even when the classifier returns a posterior probability rather than just a clas-
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sification score. However, it is important to see that the two methods deliver
differentestimates: the standard reject method estimates the expected value of
p(yi|x, θi, D) for specified classyi over the posterior distribution of the para-
metersπ(θ|D), while the envelope method estimates the expected value of the
tail-areap(y = yi|x, θi, D) > p(y = yj |x, θi, D) ∀ j 6= i over the same pos-
terior distribution. The distinction is perhaps clearer in the two-class situation,
where we need only look at the probabilities associated withone of the classes,
y say. Then the comparison is between the posterior mean ofp(y|x, θi, D),
i.e. the predictive distribution of the classificationprobabilities, and the pos-
terior mean ofI(p(y|x, θi, D) > 0.5), i.e. the predictive distribution of the
classificationoutcomes.

While there are some very specific situations when these have the same
value (e.g. ifp(y|x, θi, D) is approximately constant overθ and the posterior
distribution is symmetric about 0.5), in general they will be different. We can
demonstrate this, and highlight the points of difference inthe two approaches,
with a very simple example. Suppose that the classification probability p of
the datumx to groupy is given by a normal distribution with mean0.6 and
variance0.01 (i.e. standard deviation0.1), irrespective of the classification pa-
rameter valuesθ. In this case the posterior distribution of these parameters is
immaterial, and the MCMC process simply delivers a stream ofindependent
valuespi from a N(0.6, 0.01) distribution. By the strong law of large num-
bers the mean of this stream converges to0.6 as the number of values tends to
infinity, so the standard reject method delivers an estimatedclassification prob-
ability close to0.6. By contrast, in the envelope method the value of eachpi is
replaced by1 if it exceeds0.5 and by0 otherwise. Thus, the probability that it
is replaced by1 equals the probability that a standard normal deviate exceeds
0.5−0.6

0.1 = −1, which from normal tables equals0.841. So by the strong law of
large numbers again, the average of the 0/1 transformedpi values converges to
0.841 as the number of values tends to infinity. Thus the envelope method de-
livers an estimated classification probability close to0.841, very different from
the standard reject estimate (irrespective of for how long the MCMC process is
run).

As a practical illustration of the differences, consider a synthetic two-
class data set devised by Ripley (1994) and augmented with a further Gaussian
function: it thus comprises five Gaussian components, 3 contributing to one
class and 2 to the other (full details are given in Fieldsend etal. 2003). The
probabilistick−nearest neighbour classifier described in section 3.3 below was
applied to this data set, and the above two estimates were obtained for three
data pointsx. The picture in the top-left corner of Figure 1 shows the data
set, with the two classes denoted by circles and crosses respectively and the 0.5
Bayes classification probability contour marked. The three chosen points are
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Figure 1. Synthetic data (top left), plus plots of the standard reject (solid line) and envelope
(broken line) probability estimates ofPr(x ∈ class 2) across5 × 105 MCMC samples.

highlighted: one is firmly in class 2, one is on the border between the classes,
and one is in class 1. The other pictures in Figure 1 then show thetwo estimates
of class 2 probabilities for each point (solid line for standard reject method, bro-
ken line for envelope method) as a function of the number of MCMC samples
collected, up to5 × 105 samples. The bottom left plot refers to the point on
the decision boundary, where the reject estimate settles atabout 0.5 while the
envelope method settles at around 0.3. The other two plots refer to the points
firmly in the two classes; here the envelope values stabilise at close 1 and 0
respectively, while the reject values are around 0.05 different from them.

Of course, the above two methods are not the only possible bases for
estimation of uncertainty. A complete Bayesian summary would be to report
the full conditional distribution of thep(y|x, θi, D), and to determine the cat-
egorisation ofx as SURE or UNSURE depending on the degree of overlap of
these posterior distributions over groups. This introducessignificantly greater
computational effort, particularly if degree of overlap requires calculations of
percentiles (and hence rankings of large amounts of data). Summary statistics
of these posterior distributions would provide a first approximation. One pos-
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sibility is to report a standard deviation as well as a mean, and then to base
membership of the SURE category on whether or not the mean plusor minus a
suitable multiple of the standard deviation exceeded the requisite threshold. We
will call this the posterior distribution method; note, however, that this method
carries an implication of symmetry of posterior distributions which may not
be tenable. Another possibility is to compute1m

∑m
i=1 I(p(y|x, θi, D) > t),

which estimates the posterior probability thatp(y|x, θi, D) > t so we could
label a point as UNSURE if this estimated probability fell below a threshold
s. However, the point may be consistently and correctly classified even when
p(y|x, θi, D) exceedst on very few occasions, so this criterion may be unnec-
essarily stringent. Moreover, the major drawback of all these suggestions is that
they require the classifier to deliver posterior probabilities. We give some ex-
amples of the posterior distribution method below, but concentrate essentially
on the standard reject and envelope methods in the main development.

It is also worth noting some connections between the above methods and
other (non-Bayesian) multiple classifier systems. It has long been recognised
that classification accuracy can be improved if a selection ofdiverse classifiers
is employed, and a consensus view among them is taken when classifying x.
One possible consensus is the average posterior probability of class member-
ship of x, which relates to the standard reject method, while anotheris the
majority vote among the separate clssifications ofx, which relates to the enve-
lope method. Among majority vote strategies is the idea of “boosting”, which
is essentially a weighted system with higher weights accorded to those classi-
fications that have greater probabilities, and this is even more closely linked to
the MCMC scheme. For a recent discussion of all these ideas, together with
relevant references, see Kuncheva (2004).

3.3 Applications

In order to conduct empirical investigations, we must first choose a fam-
ily of classifiers. Many choices are possible, but to maintainflexibility while
keeping the parameter dimensionality low we focus onk−nearest neighbour
classifiers. To classify an observationx′ = (x1, . . . , xp) into one ofg groups
y = (1, . . . , g) using the standard (classical)k−nearest neighbour classifier,
we:

1. define a metric in thex−space (usually Euclidean distance);
2. find thek training set members closest tox;
3. classifyx to the majority group among thesek.

The value ofk can either be set by the user or chosen fromD by some data-
based procedure, e.g. cross-validation.
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Holmes and Adams (2002) have given a probabilistic formulation of this
process, and this enables a Bayesian approach to be taken. They define the
likelihood of the data given parametersk andβ to be

L(D|β, k) =
n

∏

i=1

exp(aiji
β/k)

∑

j exp(aijβ/k)
,

whereaij is the number of thek nearest neighbours to theith observation that
belong to groupj and ji is the group to which theith observation belongs.
Herek is the number of neighbours as above, andβ reflects the influence of
neighbours on the group probabilities: the greater the value of β, the higher
the probability of belonging to the group that has the majority of neighbours.
By assuming some temporal ordering of the data points, Holmes and Adams
(2002) then deduce the predictive distribution for the response at a new pointx
as

p(y = i|x, β, k) =
exp(aiβ/k)

∑

i exp(aiβ/k)
,

whereai is the number of groupi individuals among thek nearest training set
neighbours ofx (i = 1, . . . , g), so thatai/k is the proportion of such individu-
als. Thus the predictive scores are given by

p(y = j|x, D) =

∫

p(y = j|x, β, k)π(k, β|D)dkdβ,

whereπ(k, β|D) is the joint posterior distribution of the parametersβ, k.
We thus need to formulate a prior distributionπ(k, β) for the two

parameters. In the case of prior ignorance it is suggested that π(k, β) =
π(k)π(β) whereπ(k) is a uniform distribution between 1 andmin(n, 200)
andπ(β) is a half-normal distribution (i.e. distribution of|x| whenx is nor-
mal) with large variance. Using a symmetric MCMC proposal, any proposed
move to a new classifier from the current parameter settings(β, k) to new set-
tings (β′, k′) is accepted ifu, a draw from aU [0, 1] distribution, is less than

min
{

1, L(D|β′,k′)π(β′,k′)
L(D|β,k)π(β,k)

}

, and otherwise the current values ofβ andk are re-
tained. In all MCMC runs reported in this paper we used 10,000burn-in and
10,000 post burn-in samples, the latter taken at a sampling rate of one in seven.
Thus a total of 10,000 + 70,000 = 80,000 members constituted each chain, and
graphical methods were used to verify that each chain had reached a stationary
distribution by the end of its burn-in period.

We now apply both the standard reject and the envelope methods to a
number of data sets. In order to avoid uncertainty over the lower bound of
the thresholdt in the reject method for multi-class data, where there are many
ways in which posterior probabilities can be distributed among the classes, we
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consider only two-class sets here and so a lower bound fort is 0.5. One of these
sets is the synthetic data described above, while the other four sets are from
the UCI Machine Learning Repository; they are the Wisconsin,Ionosphere,
Pima, and Sonar data sets respectively. The data-set details are given in Table 1
(number of predictors,p; size of training set,D; size of test set,T ). Also shown
in the table are the overall classification performances, i.e. the percent correct
classification of the test set, for each data set.

To compare the envelope and reject methods we need to comparethe pro-
portions each method assigns to the three categories SURE CORRECT (SC),
SURE INCORRECT (SI) and UNSURE (U). In order to do this we have found
the proportions assigned to each of the three categories by the envelope method
at each of three commonly used threshold values (0.80, 0.95 and 0.99). To
standardize the two methods we have then found the assignments to the three
categories for which the reject method gives the same SI proportion as the en-
velope method (apart from the Pima 95% region where we standardized on the
SC proportions), together with the reject threshold value that achieves this as-
signment. In a couple of cases there was a range of such values, and in these
cases we have quoted the highest value in the range. We used the same MCMC
output on both methods. All the results are given in Table 2 for each of the five
data sets.

We also include the posterior distribution method for comparison with
these data sets, since the probabilistick−nearest neighbour classifier delivers
posterior probabilities. To standardize this method with the others we found the
multiple of the posterior standard deviation that was needed in order to produce
the same SC value as the envelope method, and where there were several pos-
sible multiples we chose the one that delivered a threshold value closest to the
envelope value. These multiples are given in the column headed “s.d.”in Table
2.

In terms of proportions within each category (SC, U, SI), the envelope
and standard reject methods of region construction give very comparable re-
sults (although the chosen probability thresholds are rather different). Where
values differ between the two methods for a category, the better (i.e. lower SI
or higher SC) value is shown in bold. We see that if we require strong con-
sistency of classification (99% envelopes) then success rates (SC) show a fall
from the unconditional rates in Table 1, but if we are prepared to tolerate weaker
consistency then there is generally a closer match between the rates. Compar-
ing the posterior distribution method with the envelope approach, the UNSURE
proportions for the former are either equal to or greater than those for the latter
in nearly all cases− but the differences are very small so the methods are very
similar when posterior probabilities are produced by the classifier.



210 W.J. Krzanowski, et al.

Table 1. Data set details and overall classification performances.

Data Set p D T % correct
Pima 8 512 256 77.1

Synthetic 2 250 1000 88.6
Sonar 60 138 70 87.1

Ionosphere 33 200 151 94.7
Wisconsin 9 455 228 99.6

One way in which we could reduce the set of values to a single one for
each method would be to assign a loss to each outcome (e.g.+2 for sure in-
correct,0 for unsure and−1 for sure correct) and to compare the expected loss
across methods. The problem here is that in the absence of substantive knowl-
edge of the particular classification task there is no guidance about suitable loss
assignments; many arbitrary choices could be made, resulting in a plethora of
comparisons, so we do not pursue this avenue here.

4. Choosing Between Classifiers

4.1 Methodology

Traditionally, classifier system performance has been measured simply
by the percentage of test-set allocations that are correct (or by its complement,
the error rate, or some simple variant depending on problem-specific variation
in the importance of the alternative classifications). Thus whenever a choice
has to be made between competing classifiers, either the success rate or the
error rate is the criterion on which the decision is based. Within a Bayesian
approach to classification, the problem is generally turned into one of model
choice and then the optimal model can be chosen on the basis ofa criterion such
as the Bayesian Information Criterion (BIC, Schwarz 1978). Agood example
is provided by Lee (2001), who uses this criterion for developing a procedure
for model choice in neural network classification. But these statistics carry
no information regarding the confidence with which the various classifications
have been made. We have argued above for the use of SURE CORRECT,SURE
INCORRECT and UNSURE as measures of confidence in classifications, so a
better comparison between classifiers should be based on simultaneous use of
all these measures.

To see how this can be implemented, we draw on the work that hasbeen
done in classifier acceptance-reject rates (see, e.g., Giacinto, Roli, and Bruz-
zone 2000, for a summary). In particular, Battiti and Cola (1994) have shown
that to compare the performance of different classifiers we need to compare
their accuracies over a range of different rejection rates (i.e. different threshold
valuest), and this can be done by plotting these values in the accuracy-rejection
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Table 2. 80%, 95% and 99% envelope method regions plus best matching reject method regions and best matching posterior distribution regions for
five data sets.

Envelope Regions Reject Regions Posterior Distribution
Data # SC U SI # SC U SI s.d. SC U SI

80% 0.7656 0.0260 0.2083 51% 0.7656 0.0260 0.2083 2.0 0.7656 0.0417 0.1927
Pima 95% 0.7552 0.0521 0.1927 53% 0.7552 0.0469 0.1979 2.5 0.7551 0.0521 0.1927

99% 0.7448 0.0677 0.1875 54% 0.7552 0.0573 0.1875 4.0 0.7448 0.0833 0.1719
80% 0.8780 0.0160 0.1060 54% 0.8760 0.0180 0.1060 1.5 0.8780 0.0170 0.1050

Synthetic 95% 0.8740 0.0270 0.0990 57% 0.8710 0.0300 0.0990 2.4 0.8740 0.0240 0.1020
99% 0.8700 0.0320 0.0980 57% 0.8680 0.0340 0.0980 4.0 0.8700 0.0360 0.0940
80% 0.8429 0.0286 0.1286 51% 0.8429 0.0286 0.1286 1.5 0.8429 0.0286 0.1286

Sonar 95% 0.8286 0.0429 0.1286 51% 0.8429 0.0286 0.1286 2.0 0.8286 0.0429 0.1286
99% 0.8000 0.0857 0.1143 52% 0.8429 0.0429 0.1143 5.0 0.8000 0.0857 0.1143
80% 0.9470 0.0066 0.0464 51% 0.9470 0.0066 0.0464 1.5 0.9470 0.0066 0.0466

Ionosphere 95% 0.9470 0.0066 0.0464 51% 0.9470 0.0066 0.0464 2.0 0.9470 0.0066 0.0466
99% 0.9338 0.0199 0.0464 51% 0.9470 0.0066 0.0464 4.0 0.9338 0.0265 0.0397
80% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219 1.5 0.9781 0.000 0.0219

Wisconsin 95% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219 2.0 0.9781 0.000 0.0219
99% 0.9781 0.000 0.0219 93% 0.9781 0.000 0.0219 4.0 0.9781 0.000 0.0219
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(A-R) plane. In our case the UNSURE proportions at differentt values corre-
spond to the rejection rates, while “accuracy” is reflected byeither of the SURE
categories. We prefer to minimise SURE INCORRECT rather than maximize
SURE CORRECT, so to compare different classifiers on a data set wecompare
the curves each produces when SURE INCORRECT is plotted against UN-
SURE for a range of values oft. The classifier corresponding to the lowest
curve on such a plot is the one to be chosen.

4.2 Applications

To illustrate this methodology, we first need a set of classifiers to com-
pare. There is an almost unlimited choice available to us, butto keep within a
traditional statistical modelling framework we define a nested set ofk−nearest
neighbour classifiers by providing first a simplification and then a generaliza-
tion of the probabilistic classifier introduced above.

The simplified version is obtained by keepingβ fixed at 1.0 throughout,
and only sampling overk. Here the probability ofx belonging to a particular
group is directly proportional to the preponderance of thisgroup among thek
nearest neighbours ofx, and there is thus no possibility of skewing this proba-
bility as the balance of neighbours between groups varies. We call this version
the “simple” classifier as opposed to the other “standard” one.

The generalized version is obtained by expanding the singleβ para-
meter into a matrixM of parameters to reflect scaling and rotation of the
variables. This is equivalent to replacing the Euclidean metric d(x1, x2) =
{(x1 − x2)

t(x1 − x2)}
1/2 in step 1 of thek−nearest neighbour process by

an “adaptive” metricd(x1, x2) = {(x1 − x2)
tM(x1 − x2)}

1/2 where the
(positive-definite) matrixM is chosen to optimize the classification with regard
to differential scales and orientations of the variables. Various ways can be de-
vised for achieving such an adaptive classifier (see, e.g., Myles and Hand 1990,
or Hastie and Tibshirani 1996). Our approach is to takeM = QΛQt, where
Λ is a diagonal scaling matrix andQ = exp(S) with S a skew-symmetric ro-
tation matrix. The proposals are generated by formingM ′ =Q′

Λ
′Q′t, where

quantitiesri drawn independently fromN(0, 0.22) are added to the diagonal
elements ofΛ to give Λ

′, andQ′ = exp(S′) where quantitiessi are drawn
independently fromN(0, 0.12) and added to elements ofS to give S′. Fur-
ther details are given by Everson and Fieldsend (2004); we callthis version the
“adaptive” classifier.

It is evident that the three classifier versions are thereforenested, with
the simple one being a special case of the standard one and this in turn being a
special case of the adaptive one.
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4.3 Comparisons of Envelope and Reject Methods

To make this comparison as simply and directly as possible, we compare
the two methods on just the simple Bayesiank−nearest neighbour classifier
(i.e. only one parameterk) and the standard Bayesiank−nearest neighbour
classifier (i.e. two parametersk andβ) on the five data sets used above; Figure
2 shows the accuracy-rejection plots for these data sets. Theplots obtained
using the envelope method are on the left, and those using thereject method
are on the right; the curve obtained from the simple classifieris indicated by
crosses, that from the standard classifier by open circles.

The first obvious difference between the envelope plots and thereject
method plots is that the latter stretch across the wholex−axis while the former
generally stop about half-way across. This is because the envelope plots are
determined by the proportion of MCMC classifiers that classify to each group,
and in all data sets there will be at least some points for which all classifiers
allocate to one group. Such points have posterior group allocation probabilities
of 1.0 so can never be categorised as UNSURE whatever the threshold value of
t − even if their estimated posterior probabilities of classification are not very
high. The reject method plots, on the other hand, are based directly on these
estimated posterior probabilities which rarely approach 1.0 for any data points
(which may, in itself, be a recommendation for this method tothe Bayesian).
Hence the range of possible UNSURE values is much greater for the reject
method than for the envelope method, and this feature is borne out by the plots.
Indeed for some envelope plots the range of UNSURE values is either very short
or nonexistent (e.g. for the Wisconsin data). Reference back to Table 2 shows
that for these data sets there are either no or very few UNSURE points at the
highest threshold value, so there cannot be any such points at lower threshold
values.

With that proviso, it is evident that the differences between the two meth-
ods of construction are very slight, and that they both give the same qualita-
tive conclusions regarding the comparison between the simple and the standard
k−nearest neighbour classifiers. Since the simple classifier is nested within
the standard one we would expect the latter to have better classification per-
formance (as the simple classifier is crude and the training samples are large),
and this is generally the case in our examples. For the Pima, Synthetic and
Sonar data sets the curve for the standard classifier lies distinctly below that
for the simple classifier (although there is a small reversal at the lowest UN-
SURE value of the Sonar data). In the cases of Ionosphere the twoclassifiers
give indistinguishable performances, the two curves virtually coinciding over
the range plotted, while the Wisconsin data (as already noted) has virtually no
variability for either classifier.
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Figure 2. Accuracy-rejection plots for the 2-group data sets; envelopemethod on left, reject
method on right, circles for standard classifier and crosses for simple classifier.
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Figure 3. Accuracy-rejection plots for the multi-group data sets using the envelope method;
circles for the standard classifier, crosses for the simple classifier.

We have stressed earlier the ease of application of the envelope method
to multi-class data, since the basic operation is no different from that in the two-
class case. We therefore selected two more data sets from theUCI repository:
the Wine data with 3 classes (p = 13, D = 89, T = 89, 96.6% correct classifi-
cation) and the Vehicle data with 4 classes (p = 19, D = 564, T = 282, 67.4%
correct classification). The accuracy-rejection plots for these sets are shown in
Figure 3 for the envelope method.

The two classifiers give virtually indistinguishable performances for the
vehicle data, the two curves lying more or less on top of each other, but for
the wine data we have the apparently surprising result that the simple classifier
has better performance than the standard classifier. However, this set of data is
one with small data sets, relatively high number of variables and well-separated
classes, so a difference of one or two classifications is enough to cause the result
observed. We ran five separate MCMC chains and noted that the misclassifi-
cation rates varied between 0% and 3.5% unpredictably across methods, so the
apparent differences are well within the MCMC “noise” levelfor this data set.

4.4 Comparison of Classifiers

We can now turn to comparison of the three versions ofk−nearest neigh-
bour classifier. First, we show in Table 3 the overall classification performances
of each of these versions as judged by the percentage of correct classifications
in the test setT of each data set.

Although there are one or two exceptions evident in the table, the broad
trend of the results suggests that classifier accuracy improves on moving suc-
cessively from simple to standard to adaptive, i.e. as the complexity of the
k-nearest neighbour classifier increases. (Although the details are not shown
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Table 3. Percentage of correct classifications in the test set for each classifier and each data set.

Classifier
Data Set simple standard adaptive

Pima 76.0 77.1 79.2
Synthetic 87.9 88.6 89.4

Sonar 85.7 87.1 84.3
Ionosphere 94.7 94.7 98.0
Wisconsin 99.6 99.6 98.7

Vehicle 63.8 67.4 77.0
Wine 98.9 96.6 98.9

here, the Bayesian-averaging classifier also generally gives better results than
just the single-best MAP classifier.) However, we have arguedabove that such
a way of judging classifier performance is too simplistic, andthat we need to
examine the SURE INCORRECT versus UNSURE plots of the classifiersover
a range of values oft. In Figure 4 we therefore show these plots for the test
data portion of each of the seven data sets. In each plot the simple classifier
is indicated by crosses, the standard classifier by open circles, and the adaptive
classifier by stars.

The picture now is less clear-cut than the error rate comparisons would
suggest. The only data set in which the above trend is definitelysupported is the
Pima data, where the curve for the simple classifier lies completely above the
curve for the standard classifier, and this in turn lies mostlyabove the curve for
the adaptive classifier. Although the standard classifier curve is not completely
above that for the adaptive classifier, it is nevertheless so for a sufficient part
of the range of UNSURE values, so that we can indeed conclude that for this
data set the adaptive classifer is best, the standard classifier is next best, and the
simple classifier is the poorest. We note that the test set for the Pima data is
quite large (256 individuals).

The remaining data sets depart from the expected trend to a greater or
lesser extent. Closest is the Synthetic data, where the simple classifier is uni-
formly the poorest again, but there is nothing to choose between the other two
types. However, it is possible to establish the optimal Bayes error rate for Syn-
thetic data; in this case both standard and adaptive versions are operating at
close to the Bayes level, and such a large test set (1000 observations) permits
accurate estimation of classification rates. For the Vehicledata there is in fact
nothing to choose between all three types until near the veryend of the range of
UNSURE values, so by analogy with the Synthetic data result we infer that all
three classifiers are operating at close to the Bayes level. Wealso note that the
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Figure 4. Accuracy-rejection plots for all data sets using the envelope method; crosses for the
simple classifier, circles for the standard classifier, stars for the adaptive classifier.
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Vehicle test set is the second largest among our data sets (282 individuals). The
Wisconsin data has very little variation across the whole range of classifiers,
so can perhaps be discounted, while the Wine and Sonar data exhibit so many
“cross-overs” of curves as to make any single conclusion meaningless. How-
ever, we note that these latter two data sets have very small test samples (89 and
70 respectively), so these “cross-overs” are a reflection of the large variability
in small data sets. The one puzzling outcome is for the Ionosphere data, which
show the reverse of the expected trend with the most complex classifier being
the poorest until near the end of the UNSURE range. This result is opposite
to the one suggested by consideration of the straightforward correct/incorrect
dichotomy and would merit further investigation.

We therefore conclude from these experiments that althoughthe addition
of a confidence measure to the usual correct/incorrect assessment of classifiers
is highly desirable, it carries a penalty in terms of sampling variability. The
expected trends show up only generally when samples are large (particularly
when test samples are large), and in small samples the picture is considerably
less clear.

5. Conclusion

We have shown that Bayesian MCMC methodology can be allied toexist-
ing knowledge on the reject option in classification to produce a quantification
of the confidence that can be ascribed to particular classification outcomes. One
point that can be made here is that a typical Bayesian MCMC classification task
gathers a vast amount of information, much of which is thrownaway without
further use. The envelope method makes use of some of this information; it
is very efficient in that it needs little more computation thanis already carried
out and has considerable added benefit, but nevertheless there is still informa-
tion being thrown away by keeping only classifications ratherthan classification
probabilities.

Of the two methods compared in detail, the envelope approachoffers
some direct advantages over the standard reject approach: interpretability in
terms of familiar confidence coefficient terminology, guidance in choice of
threshold values, and easy applicability to all types of grouping.

It has been shown that incorporating confidence measures intoa compar-
ison of classifiers via the accuracy-rejection plots can makethe comparison less
clear-cut than the traditional one based solely on either success or error rates.
This is related to the variability inherent in sample-based classifiers, which is
often ignored when making error rate comparisons. A more realistic assessment
might come from comparisons of confidence regions for error rates (see, e.g.,
Krzanowski 2001), but this does not yet seem to be standard practice.
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Indeed, it is surprising that classifier confidence has received so little at-
tention, considering the emphasis placed on confidence regions in general sta-
tistical practice. The methods described here are easily built in to a standard
Bayesian procedure so should be part of the general classification tool kit, es-
pecially in such areas as safety-critical applications. However, some aspects
remain to be investigated. For example, what can be done if the available data
are not extensive enough to be split into a training setD and a test setT? In a
fully Bayesian approach, all data would be used without holding any out, and
this would be accompanied by a formal model selection. The standard way
of proceeding in the single-classifier frequentist case would be to use a data-
based method of error rate estimation such as leave-one-out, but in our set-up
each unit omission in effect creates a new setD for the MCMC process. So
if such a scheme were to be contemplated then an efficient way oforganising
the computations would be essential. Similar considerations of efficiency are
paramount if the variability of the results is to be established using, say,n−fold
cross-validation on the(D, T ) splits of the data.

While such aspects remain to be investigated, we nevertheless feel that
use of the confidence measures described in this paper providea distinct step
forward in classifier technology.
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