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1. Introduction

Bayesian methods have been advocated in principle for maaysy
(Lindley 1965; DeGroot 1970), but their application has béampered in
practice by the computational intractability of many of ttencomitant (high-
dimensional) integrals. This state of affairs has been wiarlised in recent
years by the development of Markov Chain Monte Carlo (MCM@tmods
(see, e.g., the review by Brooks 1998) and their revergibig (RJ) exten-
sions (Green 1995). These methods allow samples to be drawnposterior
distributions that are known only up to a constant of prdpoglity, thereby
sidestepping the evaluation of the difficult integrals andaeing other integrals
by straightforward averages (or related simple summatistts) of sampled
values. The sampling process must usually be run for a vegytiore to allow
the generated Markov Chains to stabilise at the requir¢idstay distributions,
but current computing power makes light of this demand. €qusntly, there
has been an explosion in the use of RIMCMC methods for statistodelling
in the past ten years.

One specific area of interest in such methods is that of digzaint analy-
sis, or supervised classification. In essence here the pnoisi¢o define a
suitable function op featurese’ = (z1, x2, ..., xp) that will best distinguish
betweeny a-priori groups or populations, and that can be used to classifygutur
unidentified individuals most accurately to their corregbplation. A set of in-
dividuals with known population membership is generallgikble for deriving
the function (usually termed the classifier) and assessimgiformance. If this
set is large enough then it can be split into two independaris o deal with
these two aspects, the first part for training the classifietlamdecond part for
testing its efficacy, but if the set is not large then some fofalada resampling
(such as jackknifing or bootstrapping) must be employed ferprformance
assessment. This whole area has now been studied for mars/arechthere
are many possible ways of deriving classifiers and determithigir efficacies
(McLachlan 1992; Hand 1997). A full Bayesian approach hay oetently
become viable, for the reasons outlined above, but the pppte technology
has been rapidly developed (Denison, Holmes, Mallick, and52002).

However, although the derivation of classifiers and the egton of their
classification performance has been worked out for a rangesdilple models
and classifier types, other important aspects have receegsdaktention. One
such aspect, namely the confidence that can be ascribed tbaulaarclassifi-
cation result, is important in general but especially saaifety-critical systems
such as medical diagnosis or air-traffic collision alert eyst. We therefore
focus in this paper on methods for deriving confidence measalveut classi-
fications in a Bayesian context. In Section 2 we summarise the features
of Bayesian classification, in Section 3 we derive severaliplessonfidence
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measures and compare them on a range of data sets for oreilgartiassifier
family, in Section 4 we discuss how these measures can be asbodse be-
tween competing classifiers, and some concluding remarksade in Section
5.

2. Bayesian Classification

We first assume that the classifié(x, @) comes from a family of clas-
sifiers depending on the predictarsas well as on a set of parametéls=
(6o,61,...,60,). Forexample, alinear classifier belongs to the farfi(y, 8) =
0o + 0121 + O222 + ... + 0,2, Of all linear combinations of the predictors,
with coefficients and constant term comprising the set ofipatars. Applying
the classifier to an individuat yields the values of one or more classification
scores on which the classificationefis made; frequently these scores are the
posterior probabilities of group memberships #ar However, in generaf is
unknown and must be inferred from a set of individuals whos®ig mem-
berships as well as predictor values are known. The classiitgle-classifier
approach splits this set of individuals intdraining setD, say, and dest set
T, say. Therd is replaced by an estimate derived frdiy and the resulting
classifier's efficacy is assessed by finding the proportion df gasup that is
misclassified ifil". Different methods of estimation make different demands on
the data; a common framework involves the assumption of batritity model
for the dataD, and hence the use of maximum likelihood as the method of
estimation.

Within such a framework, parametric probability models faeguently
used for the populations from which the groups are taken.his ¢ase the
classifier paramete® are functions of the population model parameters. For
example, the earliest linear classifier between two populativas derived em-
pirically by Fisher (1936) and was subsequently formalisgdVelch (1939),
who modelled the two populations as two multivariate nordistributions hav-
ing meansu, pe and a common dispersion mat®. The coefficient®); in
the linear classifier are then easily shown to be functiongQfue and X.

In practice these unknown parameters are replaced by tt@maes from the
training dataD to yield what is commonly termed Fisher’s linear discriminan
function (LDF). If this function is denoted b¥ (), say, then classification af
depends on whethéf(x) < ¢ or not, for some threshold This is an example
of a classification score that is not an estimate of postermability of group
membership ofc. In other classifiers, e.g. logistic discriminators (McLaahl
1992), the classification score does yield such a probaletitynate.

For a Bayesian approach we need additionally to specifyna wior dis-
tribution 7(0) for the classifier parameters, form the likelihob@D|6) of the
training data using the chosen probability model, and hebtain the posterior
distribution of the parameters,
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m(0)L(D|6)
[ 7(0)L(D|0)d6"

The Bayesian classifier is then the expected valu€’'@é, 8) over this pos-
terior distribution, i.e.C(xz|D) = [ C(x, 0)7(0]|D)d6. This is known as the
predictiveclassification score. If the classification scores are theeposiprob-
abilities of group membership then these predictive vatweoften denoted by
p(y|x, D), wherey is the group label variable.

If the classifier parameters are functions of the probabiliydel para-
meters, then the prior and posterior distributions are Herlatter parameters
and the Bayesian classifier is the expected valug(af, 8) over this latter pos-
terior distribution. For example, in the case of Fisher's LD anultivariate
normal assumptions as above, Geisser (1982) shows thakimg the usual
reference prior expressing ignorance about the parameteys, andX:, viz.

w(0|D) =

m(pay, g, ) o [[7EHD/2,
then the posterior distribution of the parameters is a wardite¢ distribu-
tion, and the expectation @f(x, 8) over this distribution isF'(x) + p(n; —
ng)/2n1ng2, whereny, ne are the group sample sizes in the training data

This example involving Fisher’'s LDF and multivariate normadwasp-
tions is relatively unusual, in that analytical derivatiohthe expectation of
C(x, 0) is possible. More usually, evaluating the above two intisgcan be
very difficult, particularly when the dimensionality & is large. However,
from its definition the Bayesian classifier will obviously bellapproximated
by the mean o (x, 0) over a large sample of independent observations from
7(0|D). MCMC will enable such a sample to be drawn without havingvial-e
uate the integral in the denominator ©f6|D). We just need to ensure that
the MCMC acceptance probabilities are chosen so#(@tD) is the limiting
(stationary) distribution, run the chain for a prelimingbyrn-in) period to en-
sure stationarity has been reached, and then sample (sy) &t value. This
will produce approximate independence of observatiors cansistency when
estimating higher-order moments. Each value then yieldaglesbbservation
from 7(0|D), so substituting them in turn int@'(x, @) for the particularx to
be classified and averaging the results produces the Baydagsifier.

This is just an example of Bayesian averaging, which is usethmmore
generally in modelling (Hoeting, Madigan, Raftery, andikeky 1999). Of
course, the Bayesian approach does not preclude the chiagcsingle “best”
classifier, as one can simply be selected from the set of ilassjenerated by
the sampling process; the classifier obtained from the “marira-posteriori”
(MAP) value of@ would be an obvious choice. However, an averaged classi-
fier not only usually produces better overall performance tha single MAP
classifier, it is also the optimal decision-theoretic chaiten there is no single
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“true” classifier that is being sought from among the fandilyzc, 6) (Denison
etal. 2002, pp 28-29). So itis the most appropriate one toruseny practical
cases. The Bayesian approach has now been implemented fgrdiffeinent
families of classifiers, and details may be found, for exammpl®enison et al.
(2002); we use the nearest neighbour family in the illusirest below.

3. Measures of Confidence

3.1 Introduction

An important consideration in many applications, parteiyl with criti-
cal systems such as when air traffic controllers attempt tescpotential air-
craft collisions, is the need to attach a measure of confidezlaéing to any
particular classification. Although much effort has beeneexed in the past
on refining classifiers and developing methods of accuratessissnt of their
overall performance, the estimation of uncertainty in sification prediction
has been relatively under-appreciated.

A traditional method of reducing the risk of misclassificatie by means
of thereject option(surveyed in Fukunaga 1990), whereby we do not automat-
ically accept the outcome of the classifier for all points ia sample space, but
hold back any points about whose classification we have daulttisthe aim
of handling these points subsequently by different procesiulf the resultant
cost is less than the cost of wrong classification then sucb@egure will im-
prove classification reliability. We can label pointsheld back in this way as
having UNSURE classification, and all other points as having EdRssifica-
tion. Among the latter will be ones that are classified colyemd others that
are classified incorrectly by the chosen classifier, so adggtich an approach
will lead to three categories of points in a test set: thosesgltlassification is
SURE and CORRECT, those whose classification is SURE but INCORRECT
and those whose classification is UNSURE.

We will therefore consider methods that allow us to constiiuese cat-
egories for any chosen classifier. Clearly, there is a scalsuséness” along
along which points are categorised as SURE or UNSURE, and feeocxence
we will align this scale with a probability scale of O to 1 ($@t, for exam-
ple, there will be more UNSURE points at a value of sureness®titan at
one of 0.6). The Bayesian MCMC mechanism gives a good franiefeode-
veloping the methodology, because consistency or otherafi€lassification
outcomes among the different classifiers produced by the MGkiaple is an
obvious way of judging the uncertainty of the classificatimthe next section
we consider a number of possible methods.
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3.2 Methodology

If we adopt the reject option approach, we need to estabbighgoints
should be held back. Various possibilities have been mostesd, e.g., Bishop
1995), but Chow (1970) showed that theoretically the oplti@jgction rule is
to hold backz if its maximum posterior probability of allocation to anyogip
is less than a threshold Different values oft will lead to different propor-
tions of UNSURE points and will therefore correspond to défd levels of the
“sureness” scale.

In practice, of course, the posterior probabilities of editton have to
be estimated. If we use the Bayesian approach they are giydhebval-
ues of p(y|x, D) for each possible setting af, so « will be held back if
max,{p(y|x, D)} < t. Providing that the classifier is one that delivers poste-
rior probabilitiesp(y|x, 8, D) as classifier scoreg(y|x, D) is just the expecta-
tion of these probabilities over the posterior distriboti@| D) and so is sim-
ply estimated by- >, p(y|, 8;, D) over them MCMC samples. Choosing
a value oft and applying the classifier to all the pointsin the test set will
identify the points to be classified and the points to be hetk thereby gen-
erating estimated probabilities of SURE CORRECT, SURE INCORRE
UNSURE classifications for the given populations at the chesére oft. We
will call this procedure the standard reject method.

However, not all classifiers deliver a posterior probabby instead give
a classification scoré€'(x, 8;) for each classifier making up the MCMC sam-
ple, so what should be done here? The obvious possibility itatesify each
point in the test data by each of these individual classifard,any pointc that
is classified to the same group by more than a propottioiclassifiers could
be deemed a SURE classification at “sureness” lewaherwise the classifica-
tion is UNSURE. Here we convert each classifier result into areliso/ariable
(group to whichx is classified) and then obtain the average incidence in each
category, so the result can still be formally viewed as aqvast probability
of allocation and hence falls within the scope of Chow's lesin effect, if
C(=x, 0;) = y indicates that théth classifier allocates to classy, then we are
estimatingp(y|x, D) by L > | I(C(=, 8;) = y) whereI(A) is the indicator
function taking value 1 if4 is true and 0 ifA is false. In the feature space,
this method produces a gradually widening envelope of ifleaons labelled
UNSURE a¢ increases, so we will call it the envelope method.

Note that the envelope method uses consistency of actisifitations,
so only labels points as UNSURE if they are unreliable in tl&ssification
rather than simply if their posterior probabilities of gpomembership are not
high. It might therefore be a useful competitor to the statidaject method
even when the classifier returns a posterior probabilityerathan just a clas-
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sification score. However, it is important to see that the tvashods deliver
differentestimates: the standard reject method estimates the expeaiue of
p(yi|x, 6;, D) for specified clasg; over the posterior distribution of the para-
metersr(60|D), while the envelope method estimates the expected valleof t
tail-areap(y = y;|x, 0;, D) > p(y = y;|x,0,,D) ¥V j # iover the same pos-
terior distribution. The distinction is perhaps clearertia two-class situation,
where we need only look at the probabilities associated enthof the classes,
y say. Then the comparison is between the posterior meatwt, 0,, D),
i.e. the predictive distribution of the classificatiprobabilities and the pos-
terior mean ofl (p(y|z, 6;, D) > 0.5), i.e. the predictive distribution of the
classificatioroutcomes

While there are some very specific situations when these haveame
value (e.g. ifp(y|x, 8,, D) is approximately constant ovérand the posterior
distribution is symmetric about 0.5), in general they w#l different. We can
demonstrate this, and highlight the points of differencthimmtwo approaches,
with a very simple example. Suppose that the classificatiobghitity p of
the datumx to groupy is given by a normal distribution with medn6 and
variance.01 (i.e. standard deviatiof.1), irrespective of the classification pa-
rameter value®. In this case the posterior distribution of these pararsdger
immaterial, and the MCMC process simply delivers a strearimadépendent
valuesp; from a N(0.6,0.01) distribution. By the strong law of large num-
bers the mean of this stream converge8.toas the number of values tends to
infinity, so the standard reject method delivers an estimeltessification prob-
ability close t00.6. By contrast, in the envelope method the value of gadh
replaced byl if it exceeds0.5 and by0 otherwise. Thus, the probability that it
is replaced byl equals the probability that a standard normal deviate escee
05-06 — _1, which from normal tables equals341. So by the strong law of
large numbers again, the average of the 0/1 transfopmedlues converges to
0.841 as the number of values tends to infinity. Thus the envelopeadadk-
livers an estimated classification probability clos@ 11, very different from
the standard reject estimate (irrespective of for how ItiegMICMC process is
run).

As a practical illustration of the differences, consideryatketic two-
class data set devised by Ripley (1994) and augmented withiteef Gaussian
function: it thus comprises five Gaussian components, 3riboiing to one
class and 2 to the other (full details are given in Fieldsenal.e2003). The
probabilistick—nearest neighbour classifier described in section 3.3 beksv w
applied to this data set, and the above two estimates weegnebtfor three
data pointsz. The picture in the top-left corner of Figure 1 shows the data
set, with the two classes denoted by circles and crossesataggdy and the 0.5
Bayes classification probability contour marked. The thresseh points are
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Figure 1. Synthetic data (top left), plus plots of the standard reject (solijl diné envelope
(broken line) probability estimates 8% (x € class 2) across x 10° MCMC samples.

highlighted: one is firmly in class 2, one is on the border betwihe classes,
and one is in class 1. The other pictures in Figure 1 then showthestimates
of class 2 probabilities for each point (solid line for stardireject method, bro-
ken line for envelope method) as a function of the number oM@ samples
collected, up tdh x 10° samples. The bottom left plot refers to the point on
the decision boundary, where the reject estimate settlabait 0.5 while the
envelope method settles at around 0.3. The other two plads t@fthe points
firmly in the two classes; here the envelope values stabitistoae 1 and 0
respectively, while the reject values are around 0.05 miffefrom them.

Of course, the above two methods are not the only possibleskias
estimation of uncertainty. A complete Bayesian summaryld/te to report
the full conditional distribution of the(y|x, 8,, D), and to determine the cat-
egorisation otr as SURE or UNSURE depending on the degree of overlap of
these posterior distributions over groups. This introdigigsificantly greater
computational effort, particularly if degree of overlaguéres calculations of
percentiles (and hence rankings of large amounts of datajuntuy statistics
of these posterior distributions would provide a first appration. One pos-
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sibility is to report a standard deviation as well as a meawl, then to base
membership of the SURE category on whether or not the mearoplugus a
suitable multiple of the standard deviation exceeded theisée threshold. We
will call this the posterior distribution method; note, hewer, that this method
carries an implication of symmetry of posterior distriloums which may not
be tenable. Another possibility is to compute>"", I(p(y|z, 6;, D) > t),
which estimates the posterior probability thdy|x, 8,, D) > t so we could
label a point as UNSURE if this estimated probability felldwela threshold
s. However, the point may be consistently and correctly di@sseven when
p(y|x, 6;, D) exceeds on very few occasions, so this criterion may be unnec-
essarily stringent. Moreover, the major drawback of alsthsuggestions is that
they require the classifier to deliver posterior probaletiti We give some ex-
amples of the posterior distribution method below, but emiate essentially
on the standard reject and envelope methods in the mainageweht.

It is also worth noting some connections between the abotkads and
other (nhon-Bayesian) multiple classifier systems. It hag lo@en recognised
that classification accuracy can be improved if a selectiaffivedfrse classifiers
is employed, and a consensus view among them is taken whssifglag x.
One possible consensus is the average posterior propatfillass member-
ship of z, which relates to the standard reject method, while anathéne
majority vote among the separate clssificationg pivhich relates to the enve-
lope method. Among majority vote strategies is the idea ob4ting”, which
is essentially a weighted system with higher weights aaxbtd those classi-
fications that have greater probabilities, and this is evereralmsely linked to
the MCMC scheme. For a recent discussion of all these idegsttier with
relevant references, see Kuncheva (2004).

3.3 Applications
In order to conduct empirical investigations, we must firsiade a fam-

ily of classifiers. Many choices are possible, but to maintikibility while
keeping the parameter dimensionality low we focuskemearest neighbour

classifiers. To classify an observati@h= (z1,...,xz,) into one ofg groups
y = (1,...,¢) using the standard (classical}-nearest neighbour classifier,
we:

1. define a metric in the—space (usually Euclidean distance);
2. find thek training set members closestito
3. classifyx to the majority group among thege

The value ofk can either be set by the user or chosen frbnby some data-
based procedure, e.g. cross-validation.
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Holmes and Adams (2002) have given a probabilistic fornmedf this
process, and this enables a Bayesian approach to be takey. d&fiee the
likelihood of the data given parametdrand to be

. = exp(ai;, B3/k)
L(D|3,k) 21:1_[1Zjexp(aijﬂ/k')7

wherea;; is the number of thé nearest neighbours to tlith observation that
belong to groupj and j; is the group to which théth observation belongs.
Here k is the number of neighbours as above, @hckflects the influence of
neighbours on the group probabilities: the greater theevaly3, the higher

the probability of belonging to the group that has the majosf neighbours.

By assuming some temporal ordering of the data points, Holamel Adams
(2002) then deduce the predictive distribution for the cese at a new point

as
, exp(a;3/k)
=ilx,0,k) = =———F——,
S S
whereaq; is the number of groupindividuals among thé nearest training set

neighbours ofc (: =1,..., g), so thata; /k is the proportion of such individu-
als. Thus the predictive scores are given by

ply = jlz, D) = / p(y = jlz, B, k)m(k, 5| D)dkds,

wherer (k, 5| D) is the joint posterior distribution of the parametgts:.

We thus need to formulate a prior distributiarik, 3) for the two
parameters. In the case of prior ignorance it is suggestatitk, 3) =
m(k)m(8) wheren (k) is a uniform distribution between 1 andin(n,200)
and~ () is a half-normal distribution (i.e. distribution &f| whenzx is nor-
mal) with large variance. Using a symmetric MCMC proposal proposed
move to a new classifier from the current parameter set{ifigg) to new set-
tings (5, k') is accepted ifu, a draw from al/[0, 1] distribution, is less than

: L(D|B" k") (B’ k") i
min {1, W)Z(ﬂk’)} and otherwise the current values@®andk are re-

tained. In all MCMC runs reported in this paper we used 1000®-in and

10,000 post burn-in samples, the latter taken at a samaiegof one in seven.
Thus a total of 10,000 + 70,000 = 80,000 members constituteld @zain, and
graphical methods were used to verify that each chain haiheeka stationary
distribution by the end of its burn-in period.

We now apply both the standard reject and the envelope metiwod
number of data sets. In order to avoid uncertainty over theetdound of
the threshold in the reject method for multi-class data, where there anyma
ways in which posterior probabilities can be distributecoamthe classes, we
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consider only two-class sets here and so a lower boundd$d.5. One of these
sets is the synthetic data described above, while the otlugrsets are from
the UCI Machine Learning Repository; they are the Wisconkinpsphere,
Pima, and Sonar data sets respectively. The data-set detagjvan in Table 1
(number of predictorg,; size of training setD; size of test sefl"). Also shown
in the table are the overall classification performancesthe percent correct
classification of the test set, for each data set.

To compare the envelope and reject methods we need to cothpareo-
portions each method assigns to the three categories SURREOR (SC),
SURE INCORRECT (SI) and UNSURE (U). In order to do this we have fbun
the proportions assigned to each of the three categoridwetsnivelope method
at each of three commonly used threshold values (0.80, hW@30®€9). To
standardize the two methods we have then found the assigamoethe three
categories for which the reject method gives the same Sl piopas the en-
velope method (apart from the Pima 95% region where we stedizdalon the
SC proportions), together with the reject threshold vala #thieves this as-
signment. In a couple of cases there was a range of such yalouesn these
cases we have quoted the highest value in the range. We wssdrtie MCMC
output on both methods. All the results are given in Tablerz&zh of the five
data sets.

We also include the posterior distribution method for corigza with
these data sets, since the probabiligtienearest neighbour classifier delivers
posterior probabilities. To standardize this method withdthers we found the
multiple of the posterior standard deviation that was nda&derder to produce
the same SC value as the envelope method, and where thereeveral pos-
sible multiples we chose the one that delivered a threshallsevclosest to the
envelope value. These multiples are given in the column lik'edd.”in Table
2.

In terms of proportions within each category (SC, U, Sl), theetope
and standard reject methods of region construction givg gemparable re-
sults (although the chosen probability thresholds areeratiifferent). Where
values differ between the two methods for a category, theebéte. lower Si
or higher SC) value is shown in bold. We see that if we requirensgt con-
sistency of classification (99% envelopes) then success (&te) show a fall
from the unconditional rates in Table 1, but if we are pregaodolerate weaker
consistency then there is generally a closer match betweerates. Compar-
ing the posterior distribution method with the enveloperapph, the UNSURE
proportions for the former are either equal to or greaten thase for the latter
in nearly all cases- but the differences are very small so the methods are very
similar when posterior probabilities are produced by tlassifier.
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Table 1. Data set details and overall classification performances.

DataSet | p | D T % correct
Pima 8 | 512 | 256 77.1
Synthetic | 2 | 250 | 1000 88.6
Sonar 60 | 138 | 70 87.1
lonosphere| 33 | 200 | 151 94.7
Wisconsin| 9 | 455 | 228 99.6

One way in which we could reduce the set of values to a singtefon
each method would be to assign a loss to each outcome (&dor sure in-
correct,0 for unsure and-1 for sure correct) and to compare the expected loss
across methods. The problem here is that in the absence déstibs knowl-
edge of the particular classification task there is no guidabout suitable loss
assignments; many arbitrary choices could be made, neguttia plethora of
comparisons, so we do not pursue this avenue here.

4. Choosing Between Classifiers

4.1 Methodology

Traditionally, classifier system performance has been nedssimply
by the percentage of test-set allocations that are comedty(its complement,
the error rate, or some simple variant depending on prolsieecific variation
in the importance of the alternative classifications). Thugnéver a choice
has to be made between competing classifiers, either thessucai or the
error rate is the criterion on which the decision is basedthWia Bayesian
approach to classification, the problem is generally turméa dne of model
choice and then the optimal model can be chosen on the bastivérion such
as the Bayesian Information Criterion (BIC, Schwarz 1978)godd example
is provided by Lee (2001), who uses this criterion for deviglga procedure
for model choice in neural network classification. But thetsdistics carry
no information regarding the confidence with which the vasiolassifications
have been made. We have argued above for the use of SURE CORBHRIE,
INCORRECT and UNSURE as measures of confidence in classificaorss
better comparison between classifiers should be based offtamous use of
all these measures.

To see how this can be implemented, we draw on the work thabdwes
done in classifier acceptance-reject rates (see, e.g.,M@a&oli, and Bruz-
zone 2000, for a summary). In particular, Battiti and Cola94) have shown
that to compare the performance of different classifiers wetine compare
their accuracies over a range of different rejection ratesdifferent threshold
valuest), and this can be done by plotting these values in the acguegection



Table 2. 80%, 95% and 99% envelope method regions plus best matefgagmethod regions and best matching posterior distribution regions for

five data sets.

Envelope Regions

Reject Regions

Posterior Distribution

Data

SC

U

Sl

SC U

Sl

s.d.

SC U Sl

Pima

80%

0.7656

0.0260

0.2083

51%

0.7656 | 0.0260

0.2083

2.0

0.7656| 0.0417| 0.1927

95%

0.7552

0.0521

0.1927

53%

0.7552 | 0.0469

0.1979

2.5

0.7551| 0.0521| 0.1927

99%

0.7448

0.0677

0.1875

54%

0.7552| 0.0573

0.1875

4.0

0.7448| 0.0833| 0.1719

Synthetic

80%

0.8780

0.0160

0.1060

54%

0.8760| 0.0180

0.1060

1.5

0.8780| 0.0170| 0.1050

95%

0.8740

0.0270

0.0990

57%

0.8710| 0.0300

0.0990

2.4

0.8740| 0.0240| 0.1020

99%

0.8700

0.0320

0.0980

57%

0.8680| 0.0340

0.0980

4.0

0.8700| 0.0360| 0.0940

Sonar

80%

0.8429

0.0286

0.1286

51%

0.8429| 0.0286

0.1286

1.5

0.8429| 0.0286| 0.1286

95%

0.8286

0.0429

0.1286

51%

0.8429| 0.0286

0.1286

2.0

0.8286| 0.0429| 0.1286

99%

0.8000

0.0857

0.1143

52%

0.8429| 0.0429

0.1143

5.0

0.8000| 0.0857| 0.1143

lonosphere

80%

0.9470

0.0066

0.0464

51%

0.9470| 0.0066

0.0464

1.5

0.9470| 0.0066 | 0.0466

95%

0.9470

0.0066

0.0464

51%

0.9470| 0.0066

0.0464

2.0

0.9470| 0.0066 | 0.0466

99%

0.9338

0.0199

0.0464

51%

0.9470| 0.0066

0.0464

4.0

0.9338| 0.0265| 0.0397

Wisconsin

80%

0.9781

0.000

0.0219

93%

0.9781| 0.000

0.0219

15

0.9781| 0.000 | 0.0219

95%

0.9781

0.000

0.0219

93%

0.9781| 0.000

0.0219

2.0

0.9781] 0.000 | 0.0219

99%

0.9781

0.000

0.0219

93%

0.9781| 0.000

0.0219

4.0

0.9781| 0.000 | 0.0219
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(A-R) plane. In our case the UNSURE proportions at differevilues corre-
spond to the rejection rates, while “accuracy” is reflectedibiyer of the SURE
categories. We prefer to minimise SURE INCORRECT rather thaximize
SURE CORRECT, so to compare different classifiers on a data sebmpare
the curves each produces when SURE INCORRECT is plotted adadis
SURE for a range of values of The classifier corresponding to the lowest
curve on such a plot is the one to be chosen.

4.2 Applications

To illustrate this methodology, we first need a set of classifiercom-
pare. There is an almost unlimited choice available to ustdkéep within a
traditional statistical modelling framework we define a rdstet ofk —nearest
neighbour classifiers by providing first a simplification andntlaegeneraliza-
tion of the probabilistic classifier introduced above.

The simplified version is obtained by keepifidixed at 1.0 throughout,
and only sampling ovek. Here the probability ofc belonging to a particular
group is directly proportional to the preponderance of ¢hisup among thé:
nearest neighbours af, and there is thus no possibility of skewing this proba-
bility as the balance of neighbours between groups variescall this version
the “simple” classifier as opposed to the other “standard” one

The generalized version is obtained by expanding the sifgpara-
meter into a matrixM of parameters to reflect scaling and rotation of the
variables. This is equivalent to replacing the Euclidean imelfx,, x2) =
{(z1 — x2)!(x1 — x2)}/% in step 1 of thek—nearest neighbour process by
an “adaptive” metricd(xy, o) = {(x1 — x2)! M (z1 — x2)}'/? where the
(positive-definite) matri¥V is chosen to optimize the classification with regard
to differential scales and orientations of the variablesridls ways can be de-
vised for achieving such an adaptive classifier (see, e.dedvand Hand 1990,
or Hastie and Tibshirani 1996). Our approach is to tAfe= QA Q?, where
A is a diagonal scaling matrix ar@ = exp(S) with S a skew-symmetric ro-
tation matrix. The proposals are generated by fornfid§g =Q’A’Q’t, where
quantitiesr; drawn independently fronV (0, 0.22) are added to the diagonal
elements ofA to give A/, andQ’ = exp(S’) where quantities;; are drawn
independently fromV (0, 0.1?) and added to elements &f to give S’. Fur-
ther details are given by Everson and Fieldsend (2004); wetialersion the
“adaptive” classifier.

It is evident that the three classifier versions are thereafested, with
the simple one being a special case of the standard one and thrn being a
special case of the adaptive one.
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4.3 Comparisons of Envelope and Reject Methods

To make this comparison as simply and directly as possil@e;ampare
the two methods on just the simple Bayesiannearest neighbour classifier
(i.e. only one parametdf) and the standard Bayesian-nearest neighbour
classifier (i.e. two parameteksand3) on the five data sets used above; Figure
2 shows the accuracy-rejection plots for these data sets. pibite obtained
using the envelope method are on the left, and those usingejbet method
are on the right; the curve obtained from the simple classsi@ndicated by
crosses, that from the standard classifier by open circles.

The first obvious difference between the envelope plots andeteet
method plots is that the latter stretch across the whelaxis while the former
generally stop about half-way across. This is because thelape plots are
determined by the proportion of MCMC classifiers that clastifeach group,
and in all data sets there will be at least some points for kit classifiers
allocate to one group. Such points have posterior groupatitmt probabilities
of 1.0 so can never be categorised as UNSURE whatever théthdeslue of
t — even if their estimated posterior probabilities of clasatiien are not very
high. The reject method plots, on the other hand, are basedtlgion these
estimated posterior probabilities which rarely approa¢hfdr any data points
(which may, in itself, be a recommendation for this methothi Bayesian).
Hence the range of possible UNSURE values is much greatehéorgject
method than for the envelope method, and this feature issbmuhby the plots.
Indeed for some envelope plots the range of UNSURE valueshisreiery short
or nonexistent (e.g. for the Wisconsin data). Referenc& tiadable 2 shows
that for these data sets there are either no or very few UNSURtEspat the
highest threshold value, so there cannot be any such pditdeer threshold
values.

With that proviso, it is evident that the differences betw#e two meth-
ods of construction are very slight, and that they both giheegame qualita-
tive conclusions regarding the comparison between thelsiarmg the standard
k—nearest neighbour classifiers. Since the simple classifiersigdevithin
the standard one we would expect the latter to have bettssifitation per-
formance (as the simple classifier is crude and the trainimpkes are large),
and this is generally the case in our examples. For the Pimah&ymand
Sonar data sets the curve for the standard classifier liematigtibelow that
for the simple classifier (although there is a small revers#he lowest UN-
SURE value of the Sonar data). In the cases of lonosphere thelassifiers
give indistinguishable performances, the two curves allyucoinciding over
the range plotted, while the Wisconsin data (as alreadyd)dtas virtually no
variability for either classifier.
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Figure 2. Accuracy-rejection plots for the 2-group data sets; envetogtbod on left, reject

W.J. Krzanowski, et al.
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Figure 3. Accuracy-rejection plots for the multi-group data sets using rkiel@pe method;
circles for the standard classifier, crosses for the simple classifier.

We have stressed earlier the ease of application of the @peehethod
to multi-class data, since the basic operation is no diffiirem that in the two-
class case. We therefore selected two more data sets frobdCheepository:
the Wine data with 3 classeg € 13, D = 89,T = 89, 96.6% correct classifi-
cation) and the Vehicle data with 4 classps<19, D = 564, T = 282, 67.4%
correct classification). The accuracy-rejection plots festhsets are shown in
Figure 3 for the envelope method.

The two classifiers give virtually indistinguishable perfamaes for the
vehicle data, the two curves lying more or less on top of edbbrpbut for
the wine data we have the apparently surprising result ligasitnple classifier
has better performance than the standard classifier. Hoytbieset of data is
one with small data sets, relatively high number of variglaled well-separated
classes, so a difference of one or two classifications is éntmucause the result
observed. We ran five separate MCMC chains and noted that idetassifi-
cation rates varied between 0% and 3.5% unpredictably acnethods, so the
apparent differences are well within the MCMC “noise” lefal this data set.

4.4 Comparison of Classifiers

We can now turn to comparison of the three versions-afiearest neigh-
bour classifier. First, we show in Table 3 the overall classificgberformances
of each of these versions as judged by the percentage ottatassifications
in the test sef” of each data set.

Although there are one or two exceptions evident in the tdbkebroad
trend of the results suggests that classifier accuracy iregrom moving suc-
cessively from simple to standard to adaptive, i.e. as thmepbexity of the
k-nearest neighbour classifier increases. (Although thdlslete not shown
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Table 3. Percentage of correct classifications in the test set for &adifier and each data set.

Classifier
Data Set | simple | standard| adaptive
Pima 76.0 77.1 79.2
Synthetic | 87.9 88.6 89.4
Sonar 85.7 87.1 84.3
lonosphere| 94.7 94.7 98.0
Wisconsin | 99.6 99.6 98.7
Vehicle 63.8 67.4 77.0
Wine 98.9 96.6 98.9

here, the Bayesian-averaging classifier also generall\s dietter results than
just the single-best MAP classifier.) However, we have argume that such

a way of judging classifier performance is too simplistic, #mat we need to
examine the SURE INCORRECT versus UNSURE plots of the classifiens

a range of values df In Figure 4 we therefore show these plots for the test
data portion of each of the seven data sets. In each plot thgesiclassifier

is indicated by crosses, the standard classifier by operesjrahd the adaptive
classifier by stars.

The picture now is less clear-cut than the error rate comprsisvould
suggest. The only data set in which the above trend is defirstglported is the
Pima data, where the curve for the simple classifier lies calglabove the
curve for the standard classifier, and this in turn lies maalyve the curve for
the adaptive classifier. Although the standard classifierecisrmot completely
above that for the adaptive classifier, it is neverthelesosa Bufficient part
of the range of UNSURE values, so that we can indeed conclatddhthis
data set the adaptive classifer is best, the standardf@assinext best, and the
simple classifier is the poorest. We note that the test sehfoPima data is
quite large (256 individuals).

The remaining data sets depart from the expected trend toadegrer
lesser extent. Closest is the Synthetic data, where the siotgésifier is uni-
formly the poorest again, but there is nothing to choose éetwhe other two
types. However, it is possible to establish the optimal Bagreor rate for Syn-
thetic data; in this case both standard and adaptive versiom operating at
close to the Bayes level, and such a large test set (1000waiiesis) permits
accurate estimation of classification rates. For the Veldala there is in fact
nothing to choose between all three types until near theemtyof the range of
UNSURE values, so by analogy with the Synthetic data resulinfes that all
three classifiers are operating at close to the Bayes levehl¥genote that the
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Figure 4. Accuracy-rejection plots for all data sets using the envelopleoatecrosses for the
simple classifier, circles for the standard classifier, stars for the adajdissifier.
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Vehicle test set is the second largest among our data sétsn@8iduals). The
Wisconsin data has very little variation across the whoteyeaof classifiers,
so can perhaps be discounted, while the Wine and Sonar ddtitesdhimany
“cross-overs” of curves as to make any single conclusionningéess. How-
ever, we note that these latter two data sets have very sstaiamples (89 and
70 respectively), so these “cross-overs” are a reflectioh®fdrge variability
in small data sets. The one puzzling outcome is for the lorergptiata, which
show the reverse of the expected trend with the most compéesitier being
the poorest until near the end of the UNSURE range. This resupposite
to the one suggested by consideration of the straightfatwarrect/incorrect
dichotomy and would merit further investigation.

We therefore conclude from these experiments that althtghddition
of a confidence measure to the usual correct/incorrect assassf classifiers
is highly desirable, it carries a penalty in terms of sanphlariability. The
expected trends show up only generally when samples are (pegticularly
when test samples are large), and in small samples the gistwonsiderably
less clear.

5. Conclusion

We have shown that Bayesian MCMC methodology can be alliegist-
ing knowledge on the reject option in classification to predaauantification
of the confidence that can be ascribed to particular classificatitcomes. One
point that can be made here is that a typical Bayesian MCMsziflaation task
gathers a vast amount of information, much of which is thraway without
further use. The envelope method makes use of some of thigriafmn; it
is very efficient in that it needs little more computation theualready carried
out and has considerable added benefit, but neverthelessishstill informa-
tion being thrown away by keeping only classifications rathan classification
probabilities.

Of the two methods compared in detail, the envelope approéehns
some direct advantages over the standard reject approatgiprietability in
terms of familiar confidence coefficient terminology, guidana choice of
threshold values, and easy applicability to all types ofiging.

It has been shown that incorporating confidence measurea ocdampar-
ison of classifiers via the accuracy-rejection plots can nia&keomparison less
clear-cut than the traditional one based solely on eithecesss or error rates.
This is related to the variability inherent in sample-baskedsifiers, which is
often ignored when making error rate comparisons. A motgsteaassessment
might come from comparisons of confidence regions for err@srésee, e.g.,
Krzanowski 2001), but this does not yet seem to be standaddipe.
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Indeed, it is surprising that classifier confidence has redesedittle at-
tention, considering the emphasis placed on confidencenggiogeneral sta-
tistical practice. The methods described here are easilyibuib a standard
Bayesian procedure so should be part of the general clasisifidaol kit, es-
pecially in such areas as safety-critical applications.welger, some aspects
remain to be investigated. For example, what can be done ifhilable data
are not extensive enough to be split into a trainingl3e&ind a test sef'? In a
fully Bayesian approach, all data would be used without imgléiny out, and
this would be accompanied by a formal model selection. Thedstal way
of proceeding in the single-classifier frequentist case didé to use a data-
based method of error rate estimation such as leave-ondxaun our set-up
each unit omission in effect creates a new Betor the MCMC process. So
if such a scheme were to be contemplated then an efficient waygahising
the computations would be essential. Similar consideratairefficiency are
paramount if the variability of the results is to be estdi#id using, say;—fold
cross-validation on théD, T') splits of the data.

While such aspects remain to be investigated, we nevesthédel that
use of the confidence measures described in this paper pradgsinct step
forward in classifier technology.
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